3.315 \(\int \frac{x}{a+b x^4+c x^8} \, dx\)

Optimal. Leaf size=154 \[ \frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

(Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b
^2 - 4*a*c]]) - (Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b^2 - 4*a*c]
*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.0940859, antiderivative size = 154, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {1359, 1093, 205} \[ \frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[x/(a + b*x^4 + c*x^8),x]

[Out]

(Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b
^2 - 4*a*c]]) - (Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b^2 - 4*a*c]
*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1359

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[
1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k) + c*x^((2*n)/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b,
 c, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 1093

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/(b/
2 - q/2 + c*x^2), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x}{a+b x^4+c x^8} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{a+b x^2+c x^4} \, dx,x,x^2\right )\\ &=\frac{c \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,x^2\right )}{2 \sqrt{b^2-4 a c}}-\frac{c \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,x^2\right )}{2 \sqrt{b^2-4 a c}}\\ &=\frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.084659, size = 133, normalized size = 0.86 \[ \frac{\sqrt{c} \left (\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b*x^4 + c*x^8),x]

[Out]

(Sqrt[c]*(ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]]/Sqrt[b - Sqrt[b^2 - 4*a*c]] - ArcTan[(Sqrt
[2]*Sqrt[c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]]/Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(Sqrt[2]*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 120, normalized size = 0.8 \begin{align*} -{\frac{c\sqrt{2}}{2}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{c\sqrt{2}}{2}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(c*x^8+b*x^4+a),x)

[Out]

-1/2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2)
)*c)^(1/2))-1/2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(1/2)/((-b+(-4*
a*c+b^2)^(1/2))*c)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

integrate(x/(c*x^8 + b*x^4 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 1.58348, size = 1345, normalized size = 8.73 \begin{align*} -\frac{1}{4} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{b + \frac{a b^{2} - 4 \, a^{2} c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (c x^{2} + \frac{1}{2} \, \sqrt{\frac{1}{2}}{\left (b^{2} - 4 \, a c - \frac{a b^{3} - 4 \, a^{2} b c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt{-\frac{b + \frac{a b^{2} - 4 \, a^{2} c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) + \frac{1}{4} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{b + \frac{a b^{2} - 4 \, a^{2} c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (c x^{2} - \frac{1}{2} \, \sqrt{\frac{1}{2}}{\left (b^{2} - 4 \, a c - \frac{a b^{3} - 4 \, a^{2} b c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt{-\frac{b + \frac{a b^{2} - 4 \, a^{2} c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) - \frac{1}{4} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{b - \frac{a b^{2} - 4 \, a^{2} c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (c x^{2} + \frac{1}{2} \, \sqrt{\frac{1}{2}}{\left (b^{2} - 4 \, a c + \frac{a b^{3} - 4 \, a^{2} b c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt{-\frac{b - \frac{a b^{2} - 4 \, a^{2} c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) + \frac{1}{4} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{b - \frac{a b^{2} - 4 \, a^{2} c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}} \log \left (c x^{2} - \frac{1}{2} \, \sqrt{\frac{1}{2}}{\left (b^{2} - 4 \, a c + \frac{a b^{3} - 4 \, a^{2} b c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}\right )} \sqrt{-\frac{b - \frac{a b^{2} - 4 \, a^{2} c}{\sqrt{a^{2} b^{2} - 4 \, a^{3} c}}}{a b^{2} - 4 \, a^{2} c}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-1/4*sqrt(1/2)*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))*log(c*x^2 + 1/2*sqrt(1
/2)*(b^2 - 4*a*c - (a*b^3 - 4*a^2*b*c)/sqrt(a^2*b^2 - 4*a^3*c))*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*
a^3*c))/(a*b^2 - 4*a^2*c))) + 1/4*sqrt(1/2)*sqrt(-(b + (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a
^2*c))*log(c*x^2 - 1/2*sqrt(1/2)*(b^2 - 4*a*c - (a*b^3 - 4*a^2*b*c)/sqrt(a^2*b^2 - 4*a^3*c))*sqrt(-(b + (a*b^2
 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))) - 1/4*sqrt(1/2)*sqrt(-(b - (a*b^2 - 4*a^2*c)/sqrt(a^2
*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))*log(c*x^2 + 1/2*sqrt(1/2)*(b^2 - 4*a*c + (a*b^3 - 4*a^2*b*c)/sqrt(a^2*b^2
- 4*a^3*c))*sqrt(-(b - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))) + 1/4*sqrt(1/2)*sqrt(-(b
 - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*c))*log(c*x^2 - 1/2*sqrt(1/2)*(b^2 - 4*a*c + (a*b
^3 - 4*a^2*b*c)/sqrt(a^2*b^2 - 4*a^3*c))*sqrt(-(b - (a*b^2 - 4*a^2*c)/sqrt(a^2*b^2 - 4*a^3*c))/(a*b^2 - 4*a^2*
c)))

________________________________________________________________________________________

Sympy [A]  time = 2.45914, size = 88, normalized size = 0.57 \begin{align*} \operatorname{RootSum}{\left (t^{4} \left (4096 a^{3} c^{2} - 2048 a^{2} b^{2} c + 256 a b^{4}\right ) + t^{2} \left (- 64 a b c + 16 b^{3}\right ) + c, \left ( t \mapsto t \log{\left (x^{2} + \frac{256 t^{3} a^{2} b c - 64 t^{3} a b^{3} + 8 t a c - 4 t b^{2}}{c} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**4*(4096*a**3*c**2 - 2048*a**2*b**2*c + 256*a*b**4) + _t**2*(-64*a*b*c + 16*b**3) + c, Lambda(_t, _
t*log(x**2 + (256*_t**3*a**2*b*c - 64*_t**3*a*b**3 + 8*_t*a*c - 4*_t*b**2)/c)))

________________________________________________________________________________________

Giac [C]  time = 7.99019, size = 1370, normalized size = 8.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

1/4*(((a*c^3)^(1/4)*b^2 - 4*(a*c^3)^(1/4)*a*c + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b)*cosh(1/2*imag_part(arcsin(1
/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(1/4)*
b^2 - 4*(a*c^3)^(1/4)*a*c + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b)*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan((x^2 - (a/c)^(1/4)*cos(5/4*pi
 + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))/((a/c)^(1/4)*sin(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))
)/(a*b^2*c - 4*a^2*c^2) + 1/4*(((a*c^3)^(1/4)*b^2 - 4*(a*c^3)^(1/4)*a*c + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b)*c
osh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*ab
s(c))))) - ((a*c^3)^(1/4)*b^2 - 4*(a*c^3)^(1/4)*a*c + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b)*sin(1/4*pi + 1/2*real
_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan((x^
2 - (a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))/((a/c)^(1/4)*sin(1/4*pi + 1/2*arcsin(1/2
*sqrt(a*c)*b/(a*abs(c))))))/(a*b^2*c - 4*a^2*c^2) - 1/8*(((a*c^3)^(1/4)*b^2 - 4*(a*c^3)^(1/4)*a*c + (a*c^3)^(1
/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(ar
csin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(1/4)*b^2 - 4*(a*c^3)^(1/4)*a*c + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c
)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b
/(a*abs(c))))))*log(x^4 - 2*x^2*(a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + sqrt(a/c))/
(a*b^2*c - 4*a^2*c^2) - 1/8*(((a*c^3)^(1/4)*b^2 - 4*(a*c^3)^(1/4)*a*c + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b)*cos
(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(
c))))) - ((a*c^3)^(1/4)*b^2 - 4*(a*c^3)^(1/4)*a*c + (a*c^3)^(1/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi + 1/2*real_p
art(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*log(x^4 - 2*
x^2*(a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + sqrt(a/c))/(a*b^2*c - 4*a^2*c^2)